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BENDING AND TORSION OF ANISOTROPIC BEAMS

A. F. JoHNsON

National Physical Laboratory, Teddington, Middlesex

Abstract—A mathematical formulation of the bending and torsion of an anisotropic elastic beam is given.
Approximate analytic solutions to the problem are obtained by variational methods and are shown to agree well
with a numerical solution. The results are used to analyse the bending and torsion of a transversely isotropic
elastic beam., It is shown that the bending stiffness of a beam is greater when twisting is prevented—a result which
is significant for design with composite materials. A sequence of bending and torsion experiments is described
from which the five compliances of a transversely isotropic material may be determined. The results are general-
ized in order to determine the frequency dependent compliances of anisotropic viscoelastic materials.

1. INTRODUCTION

IN RECENT years there has been a considerable revival of interest in anisotropic elasticity
theory. This is a result of the need to analyse the mechanical behaviour of laminated and
fibre reinforced materials. In many applications these materials behave as anisotropic
elastic solids whose mechanical response is governed by a number of independent elastic
constants. Techniques are available for determining these constants by ultrasonic pulse
techniques (see, for example, [1]), but there is a need for elementary static tests which use
standard laboratory equipment. For isotropic materials, bending and torsion tests deter-
mine the elastic constants with a minimum of specimen preparation. In this paper a
mathematical basis for bending and torsion tests of anisotropic elastic beams with mono-
clinic symmetry is provided by analysing the mechanical behaviour of such beams when
subjected to bending and twisting moments.

Three conclusions of practical importance emerge from the analysis. The main interest
is centred on a method for determining the five elastic constants of a transversely isotropic
material by a sequence of bending and torsion tests. In addition, by noting a correspondence
between the governing elastic equations and those of anisotropic viscoelasticity theory
we are able to extend our results to the analysis of time harmonic bending and torsion
tests for viscoelastic beams. This provides one of the first practical methods for determining
all of the frequency dependent compliances for a transversely isotropic material. Since
many composite materials are both anisotropic and viscoelastic this extension of our
analysis is important in the testing of composite materials. Finally, by exploiting the
coupling which exists between bending and torsion, we show how a beam may have a
bending stiffness which is greater than the maximum modulus associated with the material
of the beam.

In Section 2 we set out the basic equations and boundary conditions for the equilibrium
response of a monoclinic elastic beam subjected to both bending and twisting moments.
We show in Section 3 how these equations apply to a transversely isotropic elastic beam
in which the symmetry axis of the material is inclined to the axis of the beam. It is not
possible to solve the resulting equations analytically. We, therefore, present in Section 4
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a variational formulation of the problem, which is more useful when obtaining approxi-
mate solutions. The variational problem tis solved in Section 5 and approximate expres-
sions are derived which relate the deflection and twist of the beam to the applied bending
and twisting moments. The accuracy of these formulae is tested by comparison with a
computed solution to the full equations. The main results are summarized in Section 6
where a sequence of experiments is described which systematically determines the five
elastic constants of a transversely isotropic material, and the extension to anisotropic
viscoelastic materials is noted.

2. FORMULATION OF THE PROBLEM

(a) Basic equations

We consider a homogeneous, anisotropic, elastic beam of length ! and of rectangular
cross-section with sides a, b. The beam is supported at each end and is in equilibrium
under the influence of a surface stress distribution. We refer the beam to a system of rec-
tangular Cartesian coordinates whose origin 0 is at the centre of one end with the x;-axis
parallel to the long sides of the beam, (see Fig. 1). We assume that there are no body forces,
that stresses acting on the ends of the beam are equipollent to a constant bending moment
M about the x,-axis and a constant twisting moment M, about the x;-axist and that the
long sides of the beam are stress-free.

The elastic material of the beam is assumed to possess monoclinic symmetry (13
independent elastic constants), with x, = 0 as the single plane of symmetry. We note,
however, that the methods described in this paper also apply when the material has a
general anisotropy.

Our aim is to determine the deformed position of the beam under the influence of the
bending moment M and twisting moment M,.

Let t;; and ¢;; denote the stress and strain tensors in the beam, where the subscripts take
the values 1, 2, 3 and the summation convention applies to repeated indices. We assume
that the beam undergoes only small deformations from a stress-free reference state, so that
the linearized equations of classical elasticity theory may be applied. We must, therefore,
solve the equilibrium equations
=0, (2.1)
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F1G. 1. Configuration of the beam. (Anticlockwise moments are taken to be positive).

+ We invoke St. Venant’s principle and neglect any effects associated with the clamping of the ends of the
beam. This assumption is valid for long beams.
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and the strain compatibility equations
€ijr+ €rrij— €y~ Cjrik = 0, (2.2)
with the constitutive relations
ey = Qyjaly- 2.3)

The ,i notation used here denotes d/0x;. The elastic compliance tensor a;;, satisfies the
usual symmetry relations a;;,; = a;; = @;jy, = Gy, hence for a monoclinic material it can
be shown that the 81 components of a;;, reduce to 13 independent constants. The strain
tensor is related to the displacement vector u; by

e;; = 3w ;+u;). (2.4)
Necessary and sufficient conditions for the integration of these equations for the displace-
ments are the compatibility conditions (2.2).

Since the beam is in equilibrium and the applied forces are independent of x,, each
cross-section is subjected to the same constant moments M, M, and, hence the stresses ¢;;
in the beam depend only on the coordinates x,, x,.t It follows from the constitutive
equations that the strains ¢;; are also functions of x, and x,. The beam is said to be in a
state of generalized plane stress. A detailed account of an anisotropic elastic cylinder in
generalized plane stress has been given by Lekhnitskii [2] where some aspects of the
following analysis are discussed. On making the assumptions t;; = t,{x;, X,), e;; = ;,(x;, X,),
the equilibrium equations (2.1) reduce to

tiigattin2 =0,

L121+18222 =0,
i3+t =0, (2.5)
the compatibility conditions (2.2) become
11,22t €22,11 = 2€12,12,
€33,11 = €3320 = €3312 =0,
(e13,2—€23,1)1 = (€13,2—€23,1),2 = 0, (2.6)
and the constitutive equations (2.3) may be written out in full as
€11 = A11l11+ay5l5, T ay3033+dy 5143,
€32 = Ayl +ayylyy tar3l33+asslys,
€33 = dy3ly1 T ay3lp; ta33833+d350)3,
2ey3 = ayuty3+ a6ty
2ey3 = a sty + a5ty +a35t33+assty3,
2e1;, = Au6ty3+agel2- 2.7)
t A constant bending moment M is realized in practice by subjecting the beam to a four point bending test.

If the beam were a cantilever or in three point bending, then M = M(x;) and the analysis presented here would
require modification.
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where a,; (¢, = 1...,6) are the usual contracted notation for the a;;,, see Hearmon
({3], Section 1.3). We note that for a monoclinic elastic material, with the plane of symmetry
x, = 0, there are 13 independent non-zero compliances. These may be obtained from the
36 a,; on using the relation a,; = a,, and on setting

A1g = Ay = 34 = Ay = G35 = 36 = dg5 = a5 = 0.
Equations (2.6), ; may be integrated immediately to give
€33 = ay3(Ax, + Bx,+ (),
€132~ €231 = — & (2.8)
where A, B, C and o are constants of integration, whose physical meaning will become
apparent later. Equations (2.5), (2.6),, (2.7) and (2.8) now provide 12 scalar equations for
the determination of the 6 components of stress and 6 components of strain in the beam.
These 12 equations are now reduced to a pair of equations in the scalar stress function
¢(x,, x,) and Y(x,, x,). For, on introducing the Airy stress function ¢ and a shear stress
function i in terms of which the stress components are
ti1 = @ a2s ty = P15 ty = —¢.12,
tis =¥, 3= —V¥,, (2.9)

it follows that the equilibrium equations (2.5) are satisfied identically. The axial stress t,
becomes

1
t33 = Ax +Bx,+ C—a—(alsd’,zz +ay30.11+a3sy ,), (2.10)
33

when (2.8), and (2.9) are substituted into equation (2.7);. All the components of stress and
strain are now defined in terms of ¢ and y. Any arbitrary functions ¢ and ¥ determine
stresses which satisfy the equilibrium equations. However, these stresses are only ad-
missible in an elastic body when the two remaining compatibility conditions for the
strains are satisfied. On substituting for the ¢;; in equations (2.6), and (2.8), we obtain the
following coupled partial differential equations which determine ¢ and y:

bya® 1111+ (2bi2+a66)0 1122+ D110 2222+ (25 +as6W 112+ D15 255 =0,
(bas+a46)P 112+ 015D 222+ Aag¥ 11 +bss¥ 2 = —2a—ay5B, (2.11)

for (x,, x,) € D, where D = {(x,, x,): —3a < x, < 3a, —3b < x, < 3b}. The modified con-
stants b, introduced here are defined in terms of the a,; by the formulae

a,;d
by = aa,,——;f,a,ﬁ =1,2,5, (2.12)

where there is no summation convention for Greek subscripts.
General expressions for the displacements u; in the beam are obtained on integrating
equations (2.4). Written out in full, these equations are

U1 = €11, U2 = €3,, Uz 3 = €33,
Uy 3tus, = 2e,;, up3tus g = 2e;;,

Uy, +uy, = 2ey,. (2.13)



Bending and torsion of anisotropic beams 531

It now follows from equations (2.13); 4, 5 and (2.8), that

U, = —%033AX§+X3(2e13—U3.1)+Ul
U, = —%a333x§+x3(2923_U3-2)+U2
Uy = a33x3(Ax; + Bx,+ C)+ Us @149

where U,, U, and U, are arbitrary functions of x, and x,. If we substitute these results
into equations (2.13), , and equate coefficients of x; we obtain

ey, =Uy,, e, = Uy,
(2313_U3.1)_1 = (zezs_Us,z),z =0, (2.15)
whence
2613_U3,1 = K,(x,), 2923"63,2 = Ky{x,)

for arbitrary functions K,, K,. On making use of equations (2.8), and (2.13); we deduce
that

K, = ax; +v,, K, = —ax,+v, (2.16)

where v, and v, are constants. The expressions (2.14) for the displacements may now be
written in the general form

Uy = —3a33AX3—ax,X3+0,%3+ Uy (xy, x,),
U, = —3033Bx3 +ax; x5 +0,%3+ Uslxy, X,),
Uy = A33X3(Ax, +Bx, +C)—vyx, —v,x, + Us(xy, x5), (2.17)

where the U(x,, x,) satisfy
Ui = a3(Ax,+Bx;+ )+ by 3¢ 11+ by 1@ 20+ b5y 5,
Usz = ay3(Ax, +Bx, + C)+ b32¢ 11 + 5120 22+ bosr 5,
Usy = —oax; — ¥, — 469,12, (2.18)

and where Uy = Uy +v,x, +0,x,.

Our analysis has now reduced the bending and torsion problem for the beam to the
solution of equations (2.11) for ¢(x,, x,), ¥(x,, x,). The stresses, strains and displacements
in the beam then follow from equations (2.7), (2.9), (2.10) and (2.17). To complete the
mathematical specification of the problem it is necessary to interpret the constants A, B,
C, a,v,, v, and find boundary conditions for the integration of equations (2.11).

(b) Boundary conditions

These are of two types, displacement conditions at the ends of the beam and the speci-
fication of forces and moments over the surface of the beam. Appropriate displacement
conditions for a simply supported beam are

ul = u2 = Uz = 0, at xl = x2 = 0, X3 = 0, l. (2.19)
On applying these conditions to equations (2.17) we obtain

Uy(0,0) = Uy(0,0) = Us(0,0) = C =0, v, =4a;34l, v, =4a;,Bl, (2.20)
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whence the displacements u; may be written

up = —3ay3Ax;5(x5 =) —ox,x;, + U (x,, X,),
Uy = —3a33Bx;3(x5 = D)+ ax; x5+ U,(xy, X,),
Uy = dy3Ax,(x3— 30+ a33Bx,(x; — )+ Us(x,, x;). (2.21)

If we compare these expressions with typical bending and torsion solutions for an
isotropic elastic beam, (see, for example, [4] equations (32.9), (34.3)) we see that 4, B
characterize bending of the beam about the x, and x, axes respectively, and « is its angle
of twist per unit length about the x;-axis. The function U, determines the warping, and
U,, U, the stretching of each cross-section D of the beam.

The long sides of the beam are assumed to be stress-free, leading to the following
boundary conditions for ¢;;:

-+

typ =1t =113=0, for x, = +ia,
1, (2.22)

tyy =ty =13, =0, for x, =

-+

We also assume that the stress distribution at the ends of the beam is equipollent to a
bending moment M and twisting moment M,. On balancing the moments of forces about
the x,, x, and x; axes at a cross-section D, we obtaint

j t33x,dS = M, f t33x, dS = 0,
D D

f (t3Xy —1y3x,)dS = M,, (2.23)
D

where it 1s understood that the integral over D is a surface integral and dS = dx,; dx,.
When use is made of equations (2.7); and (2.8),, the first two of these conditions become

1
BI, —— | (ay3ty+ay3t,,+azst3)x,dS = M,
a3 Jp
1

Al, —
2 ass

f (ay3ty1+ay3ty, +ass5t3)x,dS =0, (2.29)
D

where I,, I, are the moments of inertia of D about the x, and x, axes respectively. Integrals
of the type occurring here may be evaluated by using equations (2.5), (2.22) and the di-
vergence theorem. For example,

J tyyx; dS =J [xityq+2%3(t 0y 1 +y55)]dS,
D D

= f [(3xity 1)1 +Gxity,) 2] dS,
D

= f $x7(ty 1y +1,,n,)dS = 0,
oD

+ We adopt the sign convention that anticlockwise moments about an axis are positive. See Fig. 1.
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where 6D is the boundary of D, s is the arc length and n,, n, the components of the out-
ward normal to dD. The following results may also be established by similar arguments
{see, for example, 2] equations (18.11}(18.13))

f t“xidS = f tzzxids == 0, i= 1,2,
D D

j‘ E”xi dS - O. f t13‘x2 dS = —%M!. (2.25)
D D
Equations (2.24) now yield the conditions

1 dss
A= - A M—-22M 26
0, B I(M 24, ,), (2.26)

where I = I, = b3a/12. The constants A, B, C (if non-zero) are, therefore determined by
the applied moments, the remaining constant a being the angle of twist of the beam.

We now substitute for ¢ and ¥ in the stress conditions, On using equations (2.9), (2.22)
and integrating around the contour dD we obtain the boundary conditions

q&:éﬁ:w:() on &b, (227
on

which replace (2.22), where ¢/0n is the outward normal derivative on dD. Thus it follows
from equations (2.9), (2.23);, (2.27) and the divergence theorem that

M, =2 f ¥ ds. (2.28)
D

Summary of mathematical formulation

The bending and torsion problems for a monoclinic elastic beam of rectangular cross-
section are now reduced to the determination of ¢ and y from the partial differential
equations (2.11) with the boundary conditions (2.27). The stress distribution and displace-
ment then follow from equations (2.9), (2.10), (2.18), (2.21) with {2.26) and (2.28).

3. AN “OFF-AXIS” TRANSVERSELY ISOTROPIC BEAM

The main object of this paper is to derive formulae for determining the five elastic
constants of a transversely isotropic elastic material from a combination of bending and
torsion tests. In general it is not possible to obtain these constants by simple tests on
specimens in which a principal axis coincides with the preferred direction. Thus a bending
or torsion test must be performed on an ‘“‘off-axis” specimen. The elastic constants a,,
will now be defined so that the analysis of Section 2 may be used for such tests.
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We assume that the elastic beam depicted in Fig. 1 is composed of a transversely
isotropic elastic material whose preferred direction is parallel to the Ox,x; plane and in-
clined at an angle —0 to the x;-axis. For example, the beam could be fabricated from a
fibre-reinforced material in which the fibres are aligned in layers parallel to the 0x,x,
plane and inclined to the x5-axis. We now consider a second set of Cartesian coordinate
axes Ox; (i = 1,2, 3) such that Oxj} is the preferred direction of the elastic material and
0x’, coincides with 0x,, as shown in Fig. 2. The elastic material is transversely isotropic

X3

.

A//

-

0 X

F1G. 2. The x; and x; co-ordinate systems.

when referred to the x;-axes but it is considered to be monoclinic, with the single plane of
symmetry x, = 0 when referred to the x;-axes, the principal axes of the beam.

Let s, a;;,; be compliance tensors for the material when referred to the x; and x;
axes, respectively, and let r;; be the coordinate transformation tensor for rotations about
the x,-axis from Oxj to Ox;, then x; = r;;x; where

cosB, 0, —sinf
ry)=1 0, 1, 0
sinf, O, cos 0 (3.1)

and
(3.2)

aijkl = rimrjnrkprlqsmnpq'
These equations define the compliance tensor g;;,; of the beam in terms of the compliances
s and the angle 6. We now revert to the two suffix notation for the compliances ([3],
Section 1.3) so that s;;;, = Sy5, i = Gup (a,ﬁ'= 1 6). The only five independent,
non-zero compliances for a transversely isotropic material are sy, S;5, 513, 533, 544, the

remainder of the s,; satisfying

Sap = Spas S22 = S11, S23 = 813, Ss5 = Saa, Se6 = 2Sy1—S12)

S1a = Sis = Sy = Sy4 = S35 = S36 = S34 = S35 = S35 = Sa5 = S46 = S5¢ = 0. (3.3)
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On expanding equations (3.2), using the definitions (3.1) and the two suffix notation we
obtain

= 5,; c08* 0+ (25,3 +5,44) cos? 0 sin? @+ 553 sin* 6,

Ry
I

a,, = Sy, €08? 0+s,4sin? 0,

Ay3 = Sy3+ (511 +533—25,3—S44) sin? 0 cos? 6,

a5 = sin 0 cos B]2s,, cos? 0+ (25,3 + 544)(sin? O — cos? 0)— 25,5 sin? 6],
432 = 811

a,; = 5y, 8in% O+5,5 cos? 0,

a,s = 2(sy,—S,3)sin 8 cos 6,

Ay; = S, SIN* 0+ (25,3 +5,,) sin? 0 cos? O+ 555 cos* 0,

a5 = sin 0 cos 0[2s,, sin? 0+ (25, 3+ 5,4)(cos? O —sin? 0) — 2s;; cos? 0],
Aqq = 2AS;1—S12)sin? 0+ 5,4, cos? 0,

a46 = (2511 — 28,5, —S,4) sin G cos 0,

ass = S44+H5y1+533—25,3—5,4,) sin’ 0 cos? 0,

Age = 2811 —S;,) cos? O+s,, sin 0,

A1y = Gy = G4 = Gyg = Q34 = d3q = g5 = 456 = 0, (3.4)

which define the elastic compliances a,;, referred to the principal axes of the beam, in terms
of the five constants s,;, S5, S13, S33, S44 and 0. The analysis of Section 2 with the a,;
defined as in (3.4) may now be used to describe bending and torsion of an “off-axis” trans-
versely isotropic beam.

If a numerical or analytic solution were known for the boundary-value problem (2.11),
(2.27) we could determine the deformation of any particular beam under specified bending
and twisting moments. These results would have applications in engineering design with
anisotropic materials. However, our main interest here is the determination of the elastic
constants of the material from the observed deformation of the beam under known bending
and twisting moments. This inverse problem is more difficult to solve. We see from
equations (2.12) and (3.4) that the basic equations (2.11) are already quadratic in the s,,.
An exact solution could be represented as a series whose coefficients are nonlinear functions
of the s,;. A numerical solution is also of little direct use since the coefficients in the
equations must be specified a priori.

We, therefore, consider the possibility of finding approximate solutions to the problem
which will provide useful formulae for the s,;. Equilibrium problems in elasticity theory
may be solved by the construction of a certain integral which attains its minimum value
when the stress distribution in the body corresponds to an equilibrium state. The calculus
of variations may then be used to determine this stress distribution. The main value of this
variational formulation is the ease with which approximate solutions may be obtained,
(see, for example, [4], Ch. 7). In the next section we construct this integral ; approximate
solutions to our problem are obtained in later sections. These solutions are then compared
with a numerical solution to equations (2.11).
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4. VARIATIONAL FORMULATION OF THE PROBLEM

Denoting the strain energy of the elastic beam shown in Fig. 1 as U and letting S be
the end surfaces with outward normal n;, (n, = 0, n, = 0, ny = +1), we define the com-
plementary energy

LY )

W= U——J t;nu; dS. 4.1)
N

The theorem of minimum complementary energy ([4], Section 108) states that W has an
absolute minimum when the stress tensor ¢; is that of the equilibrium elastic state of the
beam. In deriving the principle it is assumed that ¢;; satisfies the equilibrium equations
(2.11) and the stress boundary conditions (2.22). The complementary energy W is then a
minimum when the strains (2.7) also satisfy the compatibility conditions (2.6).

We now construct a simplified expression for W by making use of some results from
Section 2. The strain energy U for the beam is defined by

U= %lf t;je; dS, 4.2)
D
which becomes, on using equations (2.7), (2.8), (with A = C = 0) and (2.12),
U =3l J (biytii+byats, +asatss+bsstis+aget, +2by5t 415,
D
+2by st 1t 3+ 2bysty ot 3+ 2,6t 1283 +a33B2x3] dS. (43)
In order to evaluate the surface contribution to W we use expressions (2.21) for u;, thus

f tnu; dS = j (tithi]c,=, dS _J [tiathile, =0 dS,
s D D

= IJ (—oax,t,3+ax t,5+1t33Ba35x,)dS.
D
On substituting for t;; we obtain
f tinu; dS = lf [ax ty3— (@ + a35B)X,t 3+ a33B>x2 — Bx,(a,3t,; +a,5t,,)]dS.  (44)
S D

The complementary energy W now follows from equations (4.1), (4.3) and (4.4).

In order to apply the complementary energy principle, the admissible stresses ¢;; must
satisfy the equilibrium equations (2.5) and the stress boundary conditions (2.22). We,
therefore, introduce the stress functions ¢ and y defined in equations (2.9). On substituting
for ¢;; in equations (4.3) and (4.4) and using (2.23),, (2.25); and (2.28) we have

W=l f F(é, ¥, x,, x,) dS, (4.5)
D

where
F =3b, 1(4’,22)2 +3b22(0 ) +%ass(¢,1z)2 + 3,4 ) +3bss(W 2)* +b120 4 19,22
+byis@ 22¥ 2+ bys 11U+ a46P 120, — (et azs B —3a33B%x3. (4.6)
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The functional is minimized on the set of functions ¢,  in D which satisfy the boundary
conditions
il
¢=—=¢ =0, on 0D. 4.7)
On
This problem in the calculus of variations determines ¢ and ¢ (and hence t;;, ¢;;, u,), re-
placing the boundary-value problem (2.11), (2.27). It may be verified that (2.11) are the
Euler equations for the variational problem (4.5), (4.6), and hence both formulations of
the problem are equivalent.
We now provide a brief description of the Rayleigh-Ritz method for the approximate
solution of variational problems, (e.g., Courant and Hilbert, [5], IV Section 2). If ¢,, ¥;,
i =1,...,n are complete sets of functions in D which satisfy (4.7} on D, we construct the

functions
bl

om = Z a;9;, Ym = ; by, m<n, 4.8)

i=1
where q;, b; are to be determined so that W(gk, ¥} is a minimum. On substituting from
equation (4.8) into (4.5) and integrating, we obtain W = W(a,, ..., a,, b,,...b,). Param-
eters a;, b; which minimize W are now solutions of the algebraic equations

ow ow ,

pa 0, T 0, i=1,...,m 4.9)
If for some m, Wk, ¢¥) is the absolute minimum of W, then ¢ = ¢k, ¥ = ¥ are the
required solutions to the variational problem. It is doubtful whether the exact solution
could be constructed in this way. However, a good approximation to it is obtained when
a;, b; are chosen to minimize W for a given choice of ¢,, ¥; and m. It has been shown for
special forms of the energy integral (4.5), (4.6) (for example, when the material is isotropic)
that

lim W(gr, vi) = W(g.y)

and under certain conditions it then follows that the series {¢}, ¥} converges to the exact
solution (¢, ¥). Some results of this type may be found in Kantorovitch and Krylov ([6],
IV, Section 4) with estimates for the order of convergence of the series. In the absence of
a specific convergence proof for the integral (4.5) we shall use a numerical solution to the
partial differential equations (2.11) as a test for the validity of approximate solutions
obtained by the Rayleigh—Ritz method.

5. APPROXIMATE SOLUTIONS TO THE VARIATIONAL PROBLEM

The numerical solution of equations {2.11) and the integrations (4.5) are facilitated if
¢ and y are expressed in dimensionless form. We, therefore, introduce dimensionless co-
ordinates X, X,, stress functions ®, ¥ and elastic constants A4,,, B, defined as follows:

= zﬂ X 2x;

Xy = a’ 2=
8a 4a
(I) = 33 , o= 33
b*2u+a;5B) ¥ b*Qa+aysB)"
a, b,
Ay=-2, By="L= A,—A;A4s. (5.0

Qay3 33
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By direct substitution into equations (2.11) and (2.27) we obtain the following boundary-
value problem for the determination of ® and ¥:

A*Bya® 4111+ A% 2By 2+ Aes)® 1122+ B1i® 5055+ AX(Bys + Aue)¥ 115+ BisY 500 = 0,
AXBys+ Aug)® 112+ Bys® 55y +A2A, W +BssW 5y = — 1, (5.2)
for (X, X,)e D*,

o0
©=—=¥=0, for(X, X;edD* (3.3)

where

D* = {(X17X2):—1 = XI)XZ < 1}1 A= b/a
and @ ; now denotes J®/0X;. We do not record dimensioniess forms for stresses and dis-
placements since these follow directly from equation (5.1) and the definitions of Section 2.

The variational formulation of the problem may also be cast in dimensionless form.
Let W* be the dimensionless complementary energy

16a
W= 3 (Wila,,IB%), 5.4
b i0ataysBe Y T IBD >4)
then ® and ¥ minimize the functional
W* = j F*dsS, (5.5)

where
F* = %Bu((p,zz)z+%X4Bzz(®,u)2+%‘12A66(®,12)2”*‘%)LZAM(‘FJ)Z‘*’%Bss(‘P,z)Z
+A2B ;@ 1, ® 55+ B s® 5, ¥ 5 + ABys® 1\ W o+ 324460 ¥ -, (5.6)

subject to conditions (5.3).

Our analysis has been mainly concerned with the determination of ® and ¥ for the
bending and torsion of anisotropic beams. However, we do not require a detailed knowledge
of the stress distribution within the beam in order to interpret experimental results. In
classical bending tests the deflection of the midpoint of the beam is measured when a
known bending moment is applied and in torsion tests the ratio of applied twisting moment
to angle of twist is calculated. We now derive corresponding relations for anisotropic
beams.

Equations (2.28) and (5.1) provide the following relation between twisting moment M,
and angle of twist «

3120+ a, s B)M*

M, = T, (5.7

where

M* = fm ¥ dS (5.8)
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and we recall that
B = (M_%A?:SMr)/I-

Referring to equations (2.21) for the displacements in the beam, we obtain for v, the
x,-component of displacement for the midpoint of the upper face of the beam,

v = uy(0, —b/2,1/2) = $Bass1? + U0, —b/2). (5.9)

The first term on the right side of this equation is the displacement of the midpoint of the
beam (0, 0, //2). The term U,(0, —b/2) is the correction for the change in thickness of the
beam as it is bent and twisted, and is expected to be small. On integrating equation (2.18),
and using condition (2.20), we obtain

—b2
U,0, —b/2) = $a,3Bb? +3b,, f ¢,11(0, x) dx_%b12¢,2(0a 0)—b,5¥(0,0), (5.10)
0

which when expressed in dimensionless form gives for v

b2
v = éBa”lz( 1 +l_2A23)

-1
+ib2(2a+a353)[12322J (D,“(O,x)dx—Blz(D,z(O,0)—325‘1’(0,0)]. (5.11)
0

Equations (5.7) and (5.11) are the main results for the interpretation of bending and torsion
experiments for anisotropic beams. We observe that ® and ¥ are not needed for all
(X,, X,) e D*, the main requirement being the evaluation of M* and the derivatives which
occur in (5.11).

The coupling which exists between bending and torsion is shown in these equations.
For example, in a torsion test with M = 0, M, # 0, we have B = —$4,,M,/I # 0. It then
follows from equation (5.11) that the beam bends about the x,-axis and twists about the
X,-axis. Similarly, in a bending test with M # 0, M, = 0, equation (5.7) shows that the
beam twists through an angle « = —4a;sM/I # 0. Thus, provided a;s # 0, these two
modes of deformation are coupled together. We note that for a beam of transversely
isotropic material a;5s = O when 0 = 0, n/2 (see equation (3.4)). Use will be made of this
observation in Section 6.

The presence of this coupling leads to experimental difficulties in bending and torsion
tests. For example, in a bending test the beam may twist off the supports. We, therefore,
examine the possibility of applying both bending and twisting moments so that the beam
1s in a state of pure bending or pure torsion.

{(a) Bending without twisting

The beam does not twist when M and M, are chosen so that a = 0. On setting a = 0
in equation (5.7) and solving for M, we obtain

3A, M*M
= —2+§;§5M*, (5.12)
and hence
M
(5.13)

T I1+343, M%)
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The deflection v now becomes

May,l? b*F
= M)y 0 14
TR VEN Y RN 14

where the correction term F is given by

-1
F = A23+2A35|:12322f D ,,(0,x)dx—B,,® ,(0, 0)—325‘1’(0,0)j|. (5.15)

0

If we assume that b2F/I? « 1, as justified later, then equation (5.14) is very similar to the
classical deflection formula for isotropic beams, namely

_MP
" 8IE’

D

where E (= 1/a,5) is Young’s modulus. Thus, to eliminate twisting in a bending test the
moment M, given by equation (5.12) must be applied to the beam. When twisting is pre-
vented, we observe that the effective Young’s modulus for the beam is increased by a factor
1+ 342 ,M*/4, provided b?F/I* is negligible. Experimentally we apply a bending moment
to the beam which is so clamped that it cannot twist; the moment M, is then applied
implicitly at the supports. It is not necessary to measure M, nor to apply it explicitly.

(b) Torsion without bending

On examining expressions (2.21) for the displacements, with A = 0, we see that if B = 0
the beam is in torsion about the x;-axis, the terms U (x, . x,) representing a warping and
stretching of the cross-sections D. Thus, when B = 0 the beam does not bend and from
equations (2.26) and (5.7) we obtain

3laM*

M, =2 (5.16)
dys

M =14,M,. (5.17)

Here the expression for M is the bending moment applied implicitly at the supports. As
in (a), it is only necessary to clamp the beam to prevent bending. We note that M* in
equation (5.16) will depend on the a4, thus a,; is not a shear compliance. If the beam is
allowed to bend freely then M = 0 and from equation (5.7) we obtain

*
Rl (5.18)
a3l +3A3sM™)
On comparing equations (5.16) and (5.18) we see that the torsional rigidity of the beam is
increased by a factor 1+342,M*/4 when bending is prevented.

Equations (5.14), (5.16) are generalizations of classical bending and torsion formulae
for anisotropic beams. They are the basis for the series of experiments described in Section 6.
We also describe in Section 6 the physical significance of the increased stiffness predicted
here. The analysis of (a) and (b) shows that ® and W are only required in the evaluation of
M* and to check that b*F/I? is negligible.
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Numerical results

We now present numerical results for M* and F obtained from the solution of
equations {5.2) by a collocation method. Details of the calculations leading to these results
are given in [7]. We consider an “off-axis”, transversely isotropic beam made from a
typical carbon fibre-epoxy resin material with elastic compliances

s;; = 133x 107" m?/N, S33 = 0418 x 10~ m?/N,
s12 = —7x 107" m?/N, s;3 = —0113x 1071 m?/N,
54e = 174 % 10711 m2/N. (5.19)

This.data is taken from experimental results of Markham [1]. By allowing the fibre angle §
to vary, and using equations (3.4) and (5.19) to define the a,,, we are able to consider a class
of monoclinic beams. It follows that M* and F are functions of s,;, $;3, $13+ S33. Sq4. 0
and A(= b/a) only. In Table 1 we present computed values of M* for a material with
compliances (5.19) and a range of values of # and 4 and in Table 2 we give corresponding
results for F.

The results shown in Table 1 are now assumed to be exact values of M* for the class of
beams-under consideration. In the final part of this section we shall derive some simple
approximations to M* whose validity will be tested by comparison with Table 1. From
Table 2 we can estimate the error involved in neglecting the term b?F/I? in the bending
formula (5.14). It is clear that this error diminishes as the length of the beam is increased.
The percentage error is less than n when

I > IOb(i—?) . (5.20)
We see from Table 2 that a typical value of |F| for the material under consideration is
{F| = 0-5. Our bending formula is then accurate to within 0-1 per cent provided [ > 22-4h.
Thus, for a typical long beam with dimensions 10 cm x 1 ¢m x 0-5 cm we would expect the
bending formula (5.14) with F = 0 to be accurate to within about 0-1 per cent.

TaBLE |
00
A 0° 15° 30° 45° 60° 75° 90°
M* 00135 0-0682 0172 0236 0258 0-26 0259
1 M, 00133 0-0666 0-166 0-228 0251 0255 0255
M, 00135 0-0681 0172 0-236 0258 026 0-259
M* 0022 0-157 0-429 0-551 0-568 0-553 0-544
1/2 M, 0-0214 0155 0423 0-542 0-559 0-545 0-536
M, 00219 0156 0-427 0-548 0-565 0-552 0-544
M* 0027 0239 0708 0-855 0-837 0793 0774
1/4 M, 00251 0231 0-688 0-826 0-805 076 0-741
M, 0-0269 0-239 0706 0-853 0-835 0791 0773
M* 003 0-295 09 1-06 i-01 0947 0921
1/10 M, 00264 0-268 0-835 0-968 0918 0-855 0-830
M, 0-0293 0292 0-898 1.05 1.0 0935 0-909
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TABLE 2
90

A 0° 15° 30° 45° 60° 75° 90°

F -027 -0-28 —-025 —-039 - 045 -0-51 —-0-53
1 N 1 1.72 1.56 1.25 1.08 1-02 1

N, 1 1.72 1-55 1-24 1.08 1-02 i

F —-0-27 —-012 004 —-0-23 —048 ~0-51 —0:53
1/2 N 1 2:65 2.40 1.58 1-18 1.03 1

N, 1 263 2.38 1-57 1-17 103 1

F -0-27 0-15 053 —-017 —031 ~0-51 -0:53
1/4 N 1 3.52 331 1-89 1-26 1.05 1

N, 1 344 325 1-88 1.25 1.04 1

F -027 0-45 -0.07 —0-35 —0-36 ~0-49 —-0-53
1/10 N 1 4.12 397 2-10 1-31 1-05 1

N, 1 3.82 3.73 2.01 1-28 1.05 1

Approximations to M*

We now estimate M* using the Rayleigh—Ritz method described in Section 4. Since the
applications of this paper are to “‘off-axis’ transversely isotropic beams we shall be mainly
interested in approximate formulae for M* which are valid uniformly as 8 varies and for
a range of velues of 4. However, the results obtained will apply to any monoclinic material.

First trial functions
Examination of equations (5.2) shows that ® = 0 is a solution if and only if there exists
a scalar y such that

Bys+Age = uAyy, Bs = uBss.

This condition is not satisfied in general. However, in the special case § = 0, n/2 it follows
from the definitions of A4,;, B,; that B,s = A, = B;5 = 0, hence the above condition is
satisfied identically with y = 0. Thus ® = 0 when = 0, /2, and it is reasonable to sup-
pose that @ remains small when 8 is close to 0 or n/2. We therefore, take as our first pair
of trial functions

®=0¥=KX-1)(Xi-1), (5.21)

which satisfy the boundary conditions (5.3). This equation is of the form (4.8) with m = 1.
The parameter K is now chosen to minimize the integral (5.5). On substituting (5.21) into
(5.6) and evaluating the integral (5.5) we obtain

16K[4K
W* = —g—[—S—(AZA44+B55)— 1].

W*(K) is a minimum when dW*/dK = 0, that is for

5

K= —ron——.
8(A%A44+ Bss)
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Thus
S5Xi-1(X3-1)
® =0, = s
B(A2A,,+ Bss)

are our first approximations to ® and W. Using equation (5.8) we obtain the following
estimate M, for M*

(5.22)

10

M =
! 9(A*A44+ Bss)

(5.23)
This first trial function, therefore, provides a simple formula for M* involving only two
out of the seven coefficients occurring in the integral (5.5). M, is compared with M* in
Table 1 for a range of values of  and A. Reference to Table 1 shows that M, approximates
M* uniformly for all 6 but the error increases as A decreases from about 2 per cent at
A=11010percentat i =01

This error is too great for use with the torsion formula {5.16), except for obtaining
rough estimates. However, in the bending formula (5.14) M* occurs in the form N =
14+ 34%2,M*/4. In Table 2 we compare N; = 1+343,M,/4 with computed values of N.
We see that there is close agreement for A =1, 0-5, 0-25 except for 8 = 15°, 30°. Thus,
equation (5.14) with M* given by (5.23) should suffice for the interpretation of ‘‘off-axis™
bending tests.

Second trial functions
In order to examine the effect of neglecting @, we take as our second trial functions

O = LX,(X3-DHX3-12, ¥ = L(X2-1)(X3-1). (5.24)

These functions satisfy the boundary conditions (5.3) and @ has been taken to be even in
X, and odd in X, {see equations {5.2)). On substituting equations (5.24) into (5.5) and (5.6)
we obtain W* = W*(L,, L,). Choosing L, and L, to satisfy the linear algebraic equations
OW*/8L, = dW*/L, = 0 we find that

—5R 5P

b= qapg—wy T 2apg Ry 23
where
P =8[3819B, | +1354%(2B, , + Age) +228A* By, ],
Q = A2A44+Bss,
22
R = 324 (Bas+ Aug) (5.26)
35
If M, is a second approximation to M* we obtain from (5.8) and (5.24)
40P
My= .
27 9(4PQ—R?) (527)

Values of M, were calculated from equation (5.27). However they agreed, to the first three
significant figures, with values given for M, in Table 1 for all 8 and A. The reason for this
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became clear when P,Q and R were examined, since it was found that R? « PQ and
equation (5.27) could be approximated by

40P 10

27 36PQ 90 !
It was also found that L, > 10°L,, thus ® « ¥ for (X,, X,)e D* and ® = 0 is clearly a
good approximation to the exact solution.

Third trial functions

The above discussion suggests that to improve our estimate for M*, we should set
® = 0, and allow ¥ to have more free parameters. Since W is an even function of X; and
X, we take

D=0 ¥=(X2-1)X2-1)(K,+K,X?+K,X2). (5.28)

Following the method outlined in Section 4 we obtain a set of three algebraic equations
for K,, K, and K; whose solution is

K, = 35(94%42, + 9B2 + 130A24,,Bss)/ T,
K, = 105355(/12/444'*'9355)/71
K, = 105424,,(942A,, + Bss)/T, (5.29)

where

T= 16(121444 + Bss) [45('14/4%4 + Bgs) + 464')*21‘144355]-
If M, is a third approximation to M* then it follows from equations (5.8), (5.28) and (5.29)
that

B 56(94*A2, +9B2, +8242A,,Bss)
 9(A2A4q+ Bss)[45(A* A%, + B3s) + 46437 4,,Bss)

M, (5.30)
M, is compared with M, and M* in Table 1. We see that for A = 1 the error involved in
using M 5 for M* is less than 0-1 per cent, rising to 0-5 per cent for 4 = 0-25, 0-5 and 1 per
cent for A = 0-1. We can therefore use M, for the interpretation of “off-axis” torsion tests.

More sophisticated trial functions could be constructed using the methods described
above. These higher order approximations may be needed if accurate values for the stresses
in the beam are required, since derivatives of ® and W enter the calculation of the stresses.
This aspect of the solution does not concern us in this paper.

We have shown that ® = 0 is an approximate solution to the boundary value problem
(5.2), (5.3). Thus, to the same degree of approximation, the stress components ¢, ¢;,,
t,, are negligible compared with t55, t,5, t,3 in our original formulation. This assumption
could not have been made a priori since the omission of ¢, t,,, t,, would lead to an over-
determined problem. However, we see that if ® = 0 and equation (5.2), is neglected we
obtain the simplified boundary value problem

A2A44¥ 11+ Bss¥ 50 = — 1, (X, X,)e D%, (5.31)

¥ =0, (X,,X,)edD* (5.32)
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which is well-posed. It is clear from our earlier discussion that the solution to equations
(5.31), (5.32) will be a reasonable approximation to the exact solution of the full equations.
This observation provides a useful starting point for approximate analytic solutions to
problems of this type, and shows that the general formulation given in Section 2 may be
simplified considerably for the solution to practical problems.

6. SUMMARY OF RESULTS AND PROPOSED EXPERIMENTAL
PROGRAMME

In this section we provide a summary of the main results and describe a sequence of
experiments to determine the five compliances of a transversely isotropic elastic material.

The beam shown in Fig. 1 is subjected to a constant bending moment M as in a four-
point bending test, and supported at each end so that twisting is prevented. The deflection
v of the midpoint of the upper surface is

B a;s M2
Y= 8101 + 3a2.M*j4aly)’ ©6.1)
where
1045,
M= — 2t 6.2
A%azs +bye) ©2

bss = ass—a}s/ayy, A =b/a, I = ab*/12, and a4 are the compliances of a monoclinic
elastic material; they may also be expressed in terms of the five compliances of a trans-
versely isotropic material and the “fibre angle” 9, (see (3.4)). Equations (6.1) and (6.2) are
a good approximation for long beams (I > 20b) with 1 > b/a > 1/4.

If the same beam is now twisted about the x;-axis but constrained by the supports
not to bend, then the angle of twist « is related to the twisting moment M, by

*
M, = 3faM , 63)

ass

where equation (6.2) provides a first approximation to M*, but a better one is

B 56a,5[94%a2, +9b2 5 +824%a, ,bss]
9(A%a,, +bss)[45(A%aZ, + b2,)+ 464A2a, bys]

These equations hold for a beam of monoclinic elastic material. However, since they
only involve the compliances a,5, a,44, 455, 435, it is not possible to determine all thirteen
elastic constants for a monoclinic beam by bending and torsion tests alone. Referring to
equations (3.4), we see that a,,, a4, ass, @35 contain all five constants of a transversely
isotropic material §;,, $;2, S;3, 533, S44, and the angle 4. Thus equations (6.2) and (6.4)
relate the five compliances and the angle 8, and by varying 8 it is possible to determine
these constants using only bending and torsion tests. We now describe two possible series
of experiments for the s,5, which make use of three specimens in which 6 takes the values
0, n/2, n/4. These will be referred to as specimens I, II and 11 respectively.

*

(6.4)

Specimen 1
On setting # = 0 in equations (3.4) we obtain

d33 = $33, Ayq = Ass = S4q, azs =0, az3 = 813, (6.5)



546 A. F. JoHNSON

hence (6.1) and (6.3) yield
MPPs,,
== (6.6)
56I0(9 + 8212 +944
%9+ 824 +94%) 67

"7 35,41+ A2)[45(1 1 1%) + 4644%]
Thus, a simple bending and torsion tests for specimen I determine s,5 and s,, explicitly.
We note that since a;5 = 0, there is no coupling between bending and torsion.

Specimen 11
When 8 = n/2, it follows from equations (3.4) that
33 = 511, d4q = 251 —513) = Segs Qss = Sqq
a3s =0, a3 = 5;,. (6.8)

Therefore, (6.1) and (6.3) become

MPs,,
=, {6.9)
56109 + 82u+9u?)
. k , (6.10)
3544(1 + w)[45(1 + p*) +4644]
where
_ Mses _ 22511 —512) (6.11)

Sa4 S4a

A simple bending test determines s,, explicitly and s,, may be found from a torsion test
by solving equation (6.10) for p.

The four experiments described above enable s,,, $33, 5,2, S44 10 be calculated. In
order to determine the fifth constant s,; it is necessary to perform either an “off-axis”
bending or an “off-axis” torsion test. We analyse both these tests for specimen IIL

Specimen 11
On substituting equation (6.2) into {6.1) and (6.3} we obtain the formulae

MPPay, 5a%5
PE TR 1~6a33(22a44+a55)——a§5 ' (6.2
10]aa,, (6.13)

" 3ass(Afag,+ass)—3als’

as first approximations to v and M,. Referring again to equations (3.4) with 6 = n/4
provides the relations

1 1
a3y = 4(811+ 533+ 544 +2813), Oyq = 3544+ Ses)

ass = 551 +533— 2543, a3s = 3511 —$33),
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which when substituted into either of equations (6.12) or (6.13) enable s, ; to be found. As
noted previously a better approximation to v and M, is obtained on using equation (6.4)
instead of (6.2).

We now describe an alternative sequence of experiments using specimens I and II
only. These experiments require an accurate measurement of v and are suitable for short
beams.

Specimen 1
On substituting from equations (6.5) into (5.14) and (5.15) we obtain the exact de-
flection formula

M(I%s33+b%s,3)

3 (6.14)

v =
In the bending analysis described above, we assumed that [ > 20b hence the second term
in this formula could be neglected. For short beams this is not the case, and we may use
this formula to calculate sy, and s,5. If the bending rig is designed so that the effective
length of the beam may be varied, then on measuring the deflection for different lengths of
beam we obtain s, ; and s,; by plotting v against /.

Specimen 11
In this case the formula corresponding to (6.14) is

_ M(%s;, +b%sy5)

6.15
o (615)

from which s,, and s, , are determined by the method described above.

The fifth constant s,, is obtained from a torsion test with specimen 1 (see equation
(6.7)). A torsion test with specimen II is not now required. This second set of experiments
seems to provide an easier method for determining the s,,. However end effects, discussed
below, may be significant in beams short enough for the use of equations (6.14) and (6.15)
and the results therefore require careful experimental investigation.

When the axes of material symmetry coincide with the beam axes, the torsion and
flexure problems are considerably simplified and there are alternative solutions in the
literature. In some cases, such as the deflection formulae (6.6) and (6.9), our results coincide
with those given elsewhere (see [3], Section 4.3). In other cases we have provided a sys-
tematic approximation to a more complicated solution. Thus Hearman ([3], Section 4.4)
gives an infinite series solution for torsion of a rectangular bar which in our analysis is
replaced by equation (6.7). Flexure of “‘off-axis™ plates has previously been discussed by
Whitney and Dauksys [8] who showed that shear coupling could cause the plate to twist
off the supports, making the measurement of material properties difficult. Our more
detailed analysis of this phenomenon suggests that “off-axis™ flexure tests are possible
provided twisting is prevented at the supports.

One of our main assumptions, which is used widely in isotropic elasticity theory, is
that St. Venant’s principle holds so that clamping effects may be neglected. In their paper
on off-axis tension tests of elastic composites Pagano and Halpin [9] attempt to analyse
the effect of end constraints on the stress field. They show that conventional clamping
devices may perturb the assumed state of uniform tensile stress in the beam causing shear
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and bending stresses to be present, which casts some doubt on our assumption that end
effects need not be considered here. It is probable that our assumption is valid for long
enough beams, and this is supported by the experimental evidence in [9] where a uniform
tensile strain was observed in the central region of the beam with a length/width ratio of
six. However it is impossible to ascribe boundary conditions which model precisely the
clamping method used in an experiment, making it necessary to solve an idealized problem.
The only test for the validity of the assumptions is whether the final results agree with
experiment. Thus an experimentalist, wishing to use our results to determine material
properties would first need to perform a series of experiments to test the range of validity
of the formulae. For example, if end effects are significant in a flexure test, the deflection
v would not be proportional to I as predicted by (6.1), and this could be investigated by
measuring v for a range of values of L.

Viscoelastic beams

The analysis of this paper may also be used to determine the frequency dependent
compliances of anisotropic viscoelastic beams deformed by time-harmonic bending or
twisting moments. The required results follow immediately from the correspondence
between the Fourier transforms of the governing elastic and viscoelastic equations. Details
of this correspondence are contained in [10]. Thus, when a viscoelastic beam undergoes
forced steady bending or torsional oscillations with frequency , the deflection and angle
of twist are given by the elastostatic equations (6.1)}+6.4) with the substitutionst

aazﬂ - a:ﬁ(w)’ saﬂ - S:B(w), Ml - Mreiwr,
M - M, v — (1), o — oft), (6.16)

where afjy(w), s¥(w) are the complex frequency dependent compliances of a viscoelastic
material with the appropriate symmetries, and M, exp{iwt), M exp(iwt) are the applied
moments. Since the elastic solution is independent of time, it follows that the results
derived from the correspondence principle apply only to quasi-static viscoelastic de-
formations where the frequency w is low enough for vibratory inertia to be neglected. A
condition realized in practice when w « 1/T, where T is a typical travel time for body
waves in the beam.

The complex compliances sj(w) for a transversely isotropic viscoelastic material may
now be obtained by performing a similar series of experiments to those described above
and using the correspondence (6.16) in equations (6.6), (6.7), (6.9), (6.10), (6.12), (6.13). We
shall briefly describe one such experiment—the bending test for specimen I. We assume
that a bending moment of constant amplitude M and frequency w is applied to the beam.
The amplitude § and phase lag ¢(w) of the displacement v(¢) are measured when a steady
state has been reached. On setting

o(t) = b, M = M &, S33 = 533

+ In obtaining the reduced constitutive equations (2.7) for an elastic material we assumed that the compliance
tensor satisfied the condition a;;,, = a;;;;, which follows from the existence of an elastic strain energy function.
In order to obtain viscoelastic equations of the same form for use in the correspondence principle, we must assume
that a;;,(f) = ay,{t) for a viscoelastic material, which has no strain energy function. Experiments have been
carried out which support this assumption for certain transversely isotropic materials, see [11].



Bending and torsion of anisotropic beams 549

in equation (6.6), we obtain

8Ipe
o= ———. 6.17
S33 IZM ( )
Let s%; = sy +isy3, where s3;(w) and s73;(w) are the real and imaginary parts of s%;, then
it follows from (6.17) that

, 8Ibcose ” —8Ibsineg

B = Ty T T

Thus s3;(w), s3;(w) are obtained on measuring # and &(w) for a range of values of w. We
note that if e(w) = 0, then s3; = 0 and s5; is the elastic compliance of the material. A
similar generalization of the other bending and torsion experiments makes it possible to
determine all five complex compliances of a transversely isotropic viscoelastic material.

The beam bending stiffness and torsional rigidity

Returning to the elastic solution, we note that our analysis describes the deformation
of an anisotropic elastic beam subjected to constant bending and twisting moments. In
Section 5 we showed that a coupling exists between bending and twisting deformations of
an anisotropic beam provided a,5 # 0. Because of this coupling, we saw in Section 5(a)
that the bending stiffn~ss of a beam constrained not to twist (x = 0) was greater than that
of the same beam allowed to twist freely (M, = 0), and in Section 5(b} there was a similar
increase in torsional rigidity when bending was prevented. We now investigate these
effects for an “off-axis” transversely isotropic beam where the magnitude of a,5 (and
hence the coupling) depends on the fibre angle 6.

Referring specifically to equations (5.14), (5.16) and (5.18), and by analogy with cor-
responding formulae for isotropic beams, we define

1 1 3a§5M* IM* IM*
E = —, E :»»——-&-—-’ G - s G = . 6.18
' ag, 27 ay, 4a3, ' agy(1+3a3sM*/4aks) 27 ay (6.15)

Then E, and E, are the effective longitudinal stiffnesses (or Young’s moduli) for the beam
in free bending (M, = 0) and constrained bending where the beam may not twist {x = 0).
Similarly G, and G, are the effective shear moduli of the beam in free torsion with bending
permitted and constrained torsion with bending prevented. Figure 3 shows the variation
of E, and E, with fibre angle 8 for a range of values of A and for the composite material
of (5.19). The lower curve E, is just the variation of longitudinal stiffness for the material
with 8 and is independent of 1. The remaining curves show the effective stiffness E, to be
greater than E, as predicted. It is interesting to note that for small /. and a range of values of
0, E, is actually greater than the maximum longitudinal stiffness of the beam material.
Similar results are shown in Fig. 4 where G, and G, are compared for two values of 4 and
a range of values of #. We see that in each case G, > G,. However, we cannot make quite
the same physical interpretation in this case, since from equation (6.18) neither G, nor G,
are identifiable as shear moduli for the elastic material, for they both depend on the
geometrical configuration of the beam. We deduce from Fig. 4 only that the effective shear
modulus of a particular beam is greater when the beam is so constrained that it cannot
bend.
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These apparent changes in stiffness are not new types of phenomena; similar results
exist in isotropic elasticity theory, but they have less practical significance. For example,
if an isotropic elastic beam with Young’s modulus E and Poisson’s ratio ¢ is stretched
longitudinally but so constrained as to prevent lateral contraction, the effective Young’s
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F1G. 4. Change in effective shear modulus for constrained torsion.
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modulus has the value

., (1-0)E
E= (1=26)(1 +0)

which is greater than E. However, this property cannot be utilized to increase the stiffness
of a beam. The significance of our results is that it is possible to exploit the increased
bending stiffness in practice since twisting may often be prevented.
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AbcTpaxt—/laeTcst MaTeMaTHyeckas GOPMYIMPOBKAa M3TH0a U KPY4YEHMS aHM3OTPONHON ynpyroit Oanku.
IlyreM OpHMeHEHHsT BapHaLMOHHBIX METOHOB, MMOJy4alOTCA NPHUONUKEHHBIE AHAJIMTHYECKME DEILCHHA,
KOTOpbI€ COIJIALIAIOTCH XOPOLIO C YHC/IEHHBIM pemeHueM. VICHONB3yloTcs pe3ynbTaThl AJS aHalu3a
u3rnba M Kpy4YEeHHs MONEPEeYHO M3O0TPONMHOM, ynpyroi 6anki. Yka3aHo, 4TO XeCTKOCTh u3ruba ysennyu-
Bae€TCs KOra TpPEmsTCTBOBAETCS YKPYYEHHE De3ynbTaT OY€Hb BaXKHBIA IUIS pacyeTa KOHCTPYKLUMH H3
COCTaBHBIX MaTepHasoB. [IpUBOAUTCE MOCNEAOBATENILHOCTE IKCIIEPUMEHTOB AJisi U3ruba M KpydYeHus, u3
KOTOPBIX MOXHO OTIPEAETUTH MSATh MOJATIUBOCTER 115 IOTIEPEYHO H3OTPONHOro Matepuana. O6obiarorcs
Pe3yNbTaTh, C LEJBLIO OMPENETEHHS YACTOThI 3aBUCHMBbIX TOJATIMBOCTEN ISl AaHH3O0TPOIHBIX , BA3KOYNPYTHX
MaTepuanos.



